
GridCopy: Moving Data
Fast on the Grid

Raj Kettimuthu, Bill Allcock, Lee
Liming, JP Navarro and Ian Foster

Argonne National Laboratory,
Argonne, IL

What is GridCopy or GCP?

  GridFTP has been commonly used as a
data transfer protocol in the Grid

  Provides a SCP-style GridFTP client
interface to users

  Takes care of tuning required to get
optimal performance for data transfers

  Provide extensible configuration options for
site administrators to optimize data
movement

GridFTP

  Extends standard FTP protocol to provide a
lot of important features
  Striped data transfer (cluster to cluster)

  Partial file transfer

  Reliable and restartable data transfer

  Data channel caching

  Supports Grid Security Infrastructure

  Setting of TCP buffer sizes

Globus GridFTP

  Modular design
  XIO architecture makes it easy to switch

transport protocols (TCP/UDT)

  Data Storage Interface (DSI) makes it easy
to access different storage systems (HPSS,
SRB)

  Client side optimizations needed to get
maximum performance
  Users are either unaware or find it difficult

to do it

Optimizations

  TCP is the default transport protocol used
by GridFTP

  It is critical to use optimal socket buffer
sizes to get maximum throughput
  Bandwidth-delay product

  Sometimes it is necessary to use multiple
TCP streams
  Difficult to predict the optimum number of

streams

GCP

  Globus-url-copy, RFT, uberftp are some of
the well-known GridFTP clients
  Users have to do these optimizations -

which is not an easy task for many

  GCP is a wrapper over globus-url-copy and
RFT
  It calculates the optimal TCP buffer size and

optimal number of TCP streams for users
  Accepts SCP-style source and destination

specifications

GCP
  GCP uses a configuration file to translate the user

request into a potentially complicated data
movement request

  Site administrators fill this configuration file using
their knowledge of the local system
  GridFTP servers may be running on hosts that can

access source and/or destination files faster

  TeraGrid uses such translations to optimize data
transfer

  Looking at sophisticated options to share the
translation information among the sites

TCP buffer size

  Optimal buffer size = 2*bandwidth*delay

  GCP uses King to calculate the delay
  From any node on the Internet, measure latency

between arbitrary hosts on Internet

  No additional infrastructure needed on end hosts

  Estimate latency between the domain name servers

  Claim ~75% of DNS servers support recursive
queries from any host

  Assume name servers are located close to their
hosts

TCP buffer size

  For bandwidth, it uses total capacity (static value
but configurable) of the link
  Calculating the current available bandwidth is tricky -

also it may not give desired result

  Default value used is 1Gbit/s

  Option to cache the calculated value

  Multiple TCP streams
  (2 * BDP)/max(1, streams/loss_factor)

  Loss_factor accommodates for congestion hit
streams

Number of streams

  Default is 4
  Based on the past experience, increasing

the number of streams above 4 does not
fetch much

  Try to arrive at a optimal number of
streams for subsequent transfers between
endpoints
  Decreasing the number of streams and

comparing the achieved throughput with the
prior value (there is a timeout period)

Experimental results

Small files

XFER SIZE GCP (B/s) GCP-NC (B/s) GUC (B/s)

1KB 283 200 304

10KB 2833 2427 3391

100KB 29596 26929 24489

1M 295819 259634 228358

Future work

  Moving translation rules across the sites
have scalability issues
  Plan to provide more scalable solutions

using MDS or PubSub models

  Evaluation of parallel streams prediction
heuristics

